MEEGA+KIDS: A Model for the Evaluation of Educational Games for Computing Education in Secondary School
(Draft Version)

Authors:
Christiane Gresse von Wangenheim
Giani Petri
Adriano Ferreti Borgatto

Version 1.0
Status: Final
Distribution: External
AUGUST 2018
Abstract

Educational games are assumed to be an effective and efficient instructional strategy for computing education. However, it is essential to systematically evaluate such games in order to obtain sound evidence on their quality. A prominent evaluation model is MEEGA+, a model to evaluate the quality of educational games used as instructional strategy for computing education, improving the initial version of MEEGA (Model for the Evaluation of Educational Games). MEEGA+ provides systematic support to evaluate the perceived quality of educational games in terms of player experience and perceived learning. The MEEGA+ model has been systematically developed by decomposing evaluation goals into measures and defining a standardized measurement instrument in form of a self-assessment questionnaire. Observing the need to evaluate also the quality of games used in computing education in middle and high school as part of an increasing tendency to popularize computing, we customized the measurement instrument to this specific target audience through a participatory design approach. As a result, this report presents a preliminary version of the questionnaire MEEGA+KIDS (in English and Brazilian Portuguese). Currently we are running an evaluation study in order to analyze the instrument’s reliability and validity. We expect that the MEEGA+KIDS model provides game creators, instructors and researchers with a measurement instrument in order to evaluate the quality of educational games in secondary school and, thus, contributes to their improvement and effective and efficient adoption in practice.
1. Introduction

Teaching computing through summer camps, clubs or in family workshops is a worldwide trend (Gresse von Wangenheim & von Wangenheim, 2014). There are several initiatives to teach computing such as Code.org (http://www.code.org), Code.club (https://www.codeclubworld.org), Computação na Escola (http://www.computacaonaescola.ufsc.br), among others. These initiatives are expected to contribute to the popularization of computing competencies as well as the awareness and interest of the students towards computing (Guzdial et al., 2014; Garneli et al., 2015).

Taking into consideration the growing number of alternative instructional units (IUs) for teaching computing, it is important to obtain evidence on the expected benefits as a basis for their systematic selection, adoption and improvement (Decker et al., 2016). Following Guzdial (2004), a main contribution to this knowledge area is not necessarily the development of new programming environments or instructional units, but to find out how to study the existing ones. A more precise understanding of the results of using these instructional units would make it possible to know whether they contribute, in fact, positively to the achievement of the learning goals and compensate the cost involved in their adoption. However, although there is evidence that existing IUs can improve the teaching and learning process in middle school being used more widely in schools worldwide, there is little research on the analysis of the contribution that these IUs can bring to education (Decker et al., 2016).

Currently, the evaluation of the quality of IUs is limited or even, sometimes, non-existent (Decker et al., 2016; Garneli et al., 2015). In many cases, a decision about the use of IUs is based on assumptions of their effectiveness (Gross and Powers, 2005; Wilson et al., 2010). On the other hand, some studies focus on specific quality factors only, such as learning improvement (Gross and Powers, 2005; Kalelioglu and Gulbahar, 2014). Other studies focus on the effectiveness of visual block-based programming languages (Weintrop and Wilensky, 2015; Grover et al., 2014; Perdikuri, 2014). However, students’ perceptions and intentions are also determining factors for successful learning (Giannakos et al., 2013). Yet, few evaluations take into consideration aspects such as motivation and the students’ experience during the instructional unit (Craig and Horton, 2009; Giannakos et al., 2014), or students’ attitudes toward technology acceptance (Giannakos et al., 2013). In addition, studies that measure students’ attitude toward computing are rather designed for higher education and seem to be outdated in the current context of teaching computing in schools (Garland and Noyes, 2008).

Especially with regard to game-based learning (Abt, 2002), there seems to be a lack of evaluation models focusing on this educational stage. Currently, there are very few approaches focusing on higher education, which provide a systematic support for game evaluations (Caldérón & Ruiz, 2015; All et al., 2016; Petri & Gresse von Wangenheim, 2016; Kordaki & Gousiou, 2017; Tahir & Wangmar, 2017; Santos et al., 2018). A prominent evaluation model is the MEEGA+ model (Petri et al., 2017a)(Petri et al., 2018b), an evolution of a model to evaluate the quality of educational games used as instructional strategy for computing education initially proposed by Savi et al. (2011) (Petri et al., 2018b). MEEGA+ provides systematic support to evaluate the perceived quality of educational games in terms of player experience and perceived learning. The MEEGA+ model has been systematically developed by decomposing evaluation goals into measures and defining a standardized measurement instrument in form of a self-assessment questionnaire. Furthermore, the MEEGA+ method (Petri et al., 2018a) provides a comprehensive support for a systematic evaluation of games used for computing education. The MEEGA+ method is composed of an evaluation model (MEEGA+ Model) defining quality factors to be evaluated through a standardized measurement instrument, a scale, which classifies the evaluated game according to its quality level, and a
Process (MEEGA+ Process) defining phases, activities and work products, guiding researchers on how to plan, execute and analyse the results of game evaluations. Observing the need to evaluate also the quality of games used in computing education in secondary schools as part of an increasing tendency to popularize computing, we customized the measurement instrument to this specific target audience. Based on the MEEGA+ model, the measurement instrument has been adapted by revising the wording in accordance to the specific target audience adopting a participatory design approach. As a result this report presents a preliminary version of the questionnaire MEEGA+KIDS (in English and Brazilian Portuguese). Currently, we are conducting an evaluation study in order to analyze the instrument’s reliability and validity. We expect that the MEEGA+KIDS model provides game creators, instructors and researchers with a measurement instrument in order to evaluate the quality of educational games in middle and high school and, thus, contribute to their improvement and effective and efficient adoption in practice.
2. Research Method

The MEEGA+KIDS model has been developed based on the MEEGA+ method (Petri et al., 2018) that has been developed systematically using a multi-method research as shown in Figure 1.
Based on a context analysis of the expected application of the model in computing education in secondary school, we revised the analysis questions and quality dimensions. We then customized the measurement instrument of the MEEGA+ model (Petri et al., 2018b) by adopting a participatory design approach, involving representatives of the target audience in the adaptation of the measurement items of the self-assessment questionnaire. As a result, we created the MEEGA+KIDS model (draft version) presented in this technical report. Currently, we are conducting an evaluation study of the MEEGA+KIDS model through a series of case studies applying the model in computing education in secondary schools after the application of a game. The aim of the evaluation study is to analyze the reliability and validity of the MEEGA+KIDS model.

This section presents the MEEGA+KIDS model for the quality evaluation of games used as an instructional strategy for computing education in secondary school customizing MEEGA+.

The objective of the MEEGA+KIDS model is to evaluate the quality of educational games in terms of usability and player experience from the students’ perspective in the context of computing education in secondary school.

Following the MEEGA+ model (Petri et al., 2018b), the MEEGA+KIDS model is decomposed into two quality factors and their dimensions (Figure 2). In this study, we define the usability as degree to which a product (educational game) can be used by specified users (students) to achieve specified goals with effectiveness and efficiency in a specified context of use (computing education), being composed of the following dimensions: aesthetics, learnability, operability, and accessibility (ISO/IEC, 2014; Davis, 1989; Mohamed & Jaafar, 2010). And, the player experience is a quality factor that covers a deep involvement of the student in the gaming task, including its perception of learning, feelings, pleasures, and interactions with the game, environment and other players (Savi et al., 2011; O’Brien & Toms, 2010; Wiebe et al., 2014; Sweetser & Wyeth, 2005; Fu et al., 2009; Tullis & Albert, 2008; Keller, 1987; ISO/IEC, 2014; Savi et al., 2011; Sindre & Moody, 2003).

Figure 2. Decomposition of the MEEGA+KIDS model
The definitions of these dimensions are presented in Table 1.

<table>
<thead>
<tr>
<th>Quality factor</th>
<th>Dimension</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability</td>
<td>Aesthetics</td>
<td>Evaluating, if the game interface enables pleasing and satisfying interaction for the user (ISO/IEC, 2014).</td>
</tr>
<tr>
<td></td>
<td>Learnability</td>
<td>Evaluating, if the game can be used by specified users to achieve specified goals of learning to use the game with effectiveness, efficiency, freedom from risk and satisfaction in a specified context of use (ISO/IEC, 2014).</td>
</tr>
<tr>
<td></td>
<td>Operability</td>
<td>Evaluating the degree to which a game has attributes that make it easy to operate and control (ISO/IEC, 2014).</td>
</tr>
<tr>
<td></td>
<td>Accessibility</td>
<td>Evaluating, if the game can be used by people with low/moderate visual impairment and/or color blindness (ISO/IEC, 2014).</td>
</tr>
<tr>
<td>Player experience</td>
<td>Focused Attention</td>
<td>Evaluating the attention, focused concentration, absorption and the temporal dissociation of the students (Keller, 1987; Wiebe et al., 2014; Savi et al., 2011).</td>
</tr>
<tr>
<td></td>
<td>Fun</td>
<td>Evaluating the students’ feeling of pleasure, happiness, relaxing and distraction (Poels et al., 2007; Savi et al., 2011).</td>
</tr>
<tr>
<td></td>
<td>Challenge</td>
<td>Evaluating how much the game is sufficiently challenging with respect to the learner’s competency level. The increase of difficulty should occur at an appropriate pace accompanying the learning curve. New obstacles and situations should be presented throughout the game to minimize fatigue and to keep the students interested (Sweetser & Wyeth, 2005; Savi et al., 2011).</td>
</tr>
<tr>
<td></td>
<td>Social Interaction</td>
<td>Evaluating, if the game promotes a feeling of a shared environment and being connected with others in activities of cooperation or competition (Fu et al., 2009; Savi et al., 2011).</td>
</tr>
<tr>
<td></td>
<td>Confidence</td>
<td>Evaluating, if students are able to make progress in the study of educational content through their effort and ability (e.g., through tasks with increasing level of difficulty) (Keller, 1987; Savi et al., 2011).</td>
</tr>
<tr>
<td></td>
<td>Relevance</td>
<td>Evaluating, if students realize that the educational proposal is consistent with their goals and that they can link content with their professional or academic future (Keller, 1987; Savi et al., 2011).</td>
</tr>
<tr>
<td></td>
<td>Satisfaction</td>
<td>Evaluating, if students feel that the dedicated effort results in learning (Keller, 1987; Savi et al., 2011).</td>
</tr>
<tr>
<td></td>
<td>Perceived Learning</td>
<td>Evaluating the perceptions of the overall effect of the game on students’ learning in the course (Sindre & Moody, 2003; Savi et al., 2011).</td>
</tr>
</tbody>
</table>

In order to operationalize the measurement of these defined quality factors/dimensions, a research design is defined.

Definition of the research design. As research design, we chose a case study design, which allows an in-depth research of an individual, group or event (Wohlin et al., 2012; Yin, 2017). The study is conducted as a one-shot post-test only design, in which the case study begins with the application of the treatment (educational game) and then the data are collected. Data collection is operationalized through a standardized measurement instrument (questionnaire). The questionnaire is answered by the students (self-assessment) in order to collect data on their perceptions about the game.

Definition of the MEEGA+KIDS measurement instrument. Customizing the MEEGA+ measurement instrument by adopting a participatory design methodology, the MEEGA+KIDS measurement instrument has been proposed as presented in Table 2. As part of the customization some items have been excluded as considered being less important and partly covered by other items. We also changed the wording in some cases using a language more closely to the one used by the target audience to facilitate understanding.
Table 2. MEEGA+ measurement instrument items and their references

<table>
<thead>
<tr>
<th>Quality factor</th>
<th>Dimension</th>
<th>Description</th>
<th>English draft version</th>
<th>MEEGA+KIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aesthetics</td>
<td></td>
<td>The game design is attractive (interface, graphics, cards, boards, etc.). The text font and colors are well blended and consistent.</td>
<td>The game design is attractive (game board, cards, etc.). The font and colors of the game match.</td>
<td>O design do jogo é atraente (tabuleiro, cartas, etc.). As cores e fontes do material do jogo combinam.</td>
</tr>
<tr>
<td>Learnability</td>
<td></td>
<td>I needed to learn a few things before I could play the game. Learning to play this game was easy for me.</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Learnability</td>
<td></td>
<td>I think that most people would learn to play this game very quickly. I think that the game is easy to play.</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Operability</td>
<td></td>
<td>The game rules are clear and easy to understand. The fonts (size and style) used in the game are easy to read.</td>
<td>The game rules are clear and easy to understand. The size and style of fonts used in the game are easy to read.</td>
<td>As regras do jogo são claras e compreensíveis. O tamanho e estilo de letras utilizadas no jogo são legíveis.</td>
</tr>
<tr>
<td>Accessibility</td>
<td></td>
<td>The colors used in the game are meaningful. The contents and structure helped me to become confident that I would learn with this game.</td>
<td>The colors used in the game are meaningful. The organization of the content helped me to become confident that I would learn with this game.</td>
<td>As cores utilizadas no jogo são compreensíveis. A organização do conteúdo me ajudou a estar confiante de que eu iria aprender com este jogo.</td>
</tr>
<tr>
<td>Challenge</td>
<td></td>
<td>This game is appropriately challenging for me.</td>
<td>This game is appropriately challenging for me.</td>
<td>Este jogo é desafiador suficiente para mim.</td>
</tr>
<tr>
<td>Challenge</td>
<td></td>
<td>The game provides new challenges (offers new obstacles, situations or variations) at an appropriate pace.</td>
<td>The game provides new challenges (offers new obstacles, situations or variations) at an appropriate pace.</td>
<td>O jogo oferece novos desafios (novos obstáculos, situações ou variações) com um ritmo adequado.</td>
</tr>
<tr>
<td>Challenge</td>
<td></td>
<td>The game does not become monotonous as it progresses (repetitive or boring tasks).</td>
<td>The game does not become monotonous as it progresses (repetitive or boring tasks).</td>
<td>O jogo não se torna monótono nas suas tarefas (repetitivo ou com tarefas chatas).</td>
</tr>
<tr>
<td>Satisfaction</td>
<td></td>
<td>Completing the game tasks gave me a satisfying feeling of accomplishment. It is due to my personal effort that I managed to advance in the game.</td>
<td>Completing the game tasks gave me a satisfying feeling of accomplishment. It is due to my personal effort that I managed to advance in the game.</td>
<td>Completar as tarefas do jogo me deu um sentimento de satisfação. É devido ao meu esforço pessoal que eu consigo avançar no jogo.</td>
</tr>
<tr>
<td>Satisfaction</td>
<td></td>
<td>I feel satisfied with the things that I learned from the game.</td>
<td>I feel satisfied with the things that I learned from the game.</td>
<td>Me sinto satisfeito com as coisas que aprendi no jogo.</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
<td>Portuguese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Interaction</td>
<td>I would recommend this game to my colleagues. I was able to interact with other players during the game. The game promotes cooperation and/or competition among the players. I felt good interacting with other players during the game.</td>
<td>Eu recomendaria este jogo para meus colegas. Eu pude interagir com outras pessoas durante o jogo. O jogo promove momentos de cooperação e/ou competição entre os jogadores. Eu me senti bem interagindo com outras pessoas durante o jogo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fun</td>
<td>I had fun with the game. Something happened during the game (game elements, competition, etc.) which made me smile.</td>
<td>Eu me diverti com o jogo. Aconteceu alguma situação durante o jogo que me fez sorrir.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focused Attention</td>
<td>There was something interesting at the beginning of the game that captured my attention. I was so involved in my gaming task that I lost track of time.</td>
<td>Houve algo interessante no início do jogo que capturou minha atenção. Eu estava tão envolvido no jogo que eu perdi a noção do tempo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevance</td>
<td>I forgot about my immediate surroundings while playing this game. The game’s content is of my interest. It is clear to me how the contents of the game are related to the course. I learned content of the course with this game.</td>
<td>--</td>
<td>O conteúdo do jogo me interessa. É claro para mim como o conteúdo do jogo está relacionado com a disciplina. Eu aprendi conteúdo da disciplina com este jogo.</td>
<td></td>
</tr>
<tr>
<td>Perceived Learning</td>
<td>The game contributed to my learning in this course. I prefer learning with this game than through other ways (e.g. expositive lectures given by the teacher).</td>
<td>Descriptive question “What did you learn playing the game?” Pergunta descritiva “O que você aprendeu jogando esse jogo?”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Response format. As response format, we adopt a 5-point Likert scale with response alternatives ranging from strongly disagree to strongly agree (DeVellis, 2016; Malhotra & Birks, 2008). The use of a Likert scale, in its original 5-point format, allows to express the opinion of the individual (student) under the object of study (educational game) with precision, besides allowing the individual being comfortable to express their opinion, using a neutral point and, thus, contributing to the quality of the answers (Dawes, 2008).

Items measuring the achievement of the learning goals of each game are included in the measurement instrument to be customized in accordance with the specific learning goals of each educational game. Differently to the MEEGA+ measurement instrument in which the achievement of the learning goals is measured through a self-assessment of the participants, this measurement is done as part of the MEEGA+KIDS questionnaire through a set of multiple-choice questions assessing the achievement of the learning goals. These multiple choice questions have to be carefully defined in accordance to the specific learning goals and the competence level to be achieved in accordance with the revised version of Bloom’s taxonomy (Anderson, Krathwohl, & Bloom, 2001)(Simpson, 1972)(Krathwohl, Bloom, & Masia, 1973). As part of a self-assessment of the perception of the learning effect of the game we included also a descriptive question “What did you learn playing the game?”

Templates of the MEEGA+KIDS questionnaire are available in English and Brazilian Portuguese on the site: http://www.gqs.ufsc.br/meega-a-model-for-evaluating-educational-games/

An example instantiation of the template is presented in Appendix A (in Brazilian Portuguese).

Analysis of the data collected. Following the MEEGA+KIDS model, the objective defined is: evaluate the quality of educational games in terms of usability and player experience from the students’ perspective in the context of computing education in secondary school. Based on the objective defined for the evaluation, following the MEEGA+ model and the GQM approach (Basili et al., 1994), the objective is decomposed into quality aspects and analysis questions to be analysed:

Usability
AQ1: Does the <name of the evaluated game> have a good usability?

Player Experience
AQ2: Does the <name of the evaluated game> provide a positive player experience?

In addition to this analysis questions, complementary questions may address the identification of the characteristics of the sample in terms of age, gender and frequency that the students play games:
AQ3: How old are the students that compose the sample of the study?
AQ4: What is the gender of the students that compose the sample of the study?
AQ5: What is the frequency that the students play (digital and/or non-digital) games?

In order to answer these defined analysis questions, data collected through the MEEGA+KIDS measurement instrument are analysed through descriptive statistics methods (Trochim & Donnelly, 2008; Wohlin et al., 2012). Descriptive statistics methods are used to describe and graphically present interesting aspects of the data collected (Wohlin et al., 2012). Table 3 presents the descriptive statistics methods used to answer each analysis question.

<table>
<thead>
<tr>
<th>Analysis questions</th>
<th>Descriptive statistics methods</th>
<th>Data analysed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AQ1: Does the <name of the evaluated game> has a good usability?</td>
<td>Measures of central tendency (median, average and frequency of responses); Graphical visualization (frequency charts)</td>
<td>Data collected through the MEEGA+ measurement instrument on the usability quality factor.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>AQ2: Does the <name of the evaluated game> provides a positive player experience?</td>
<td>Measures of central tendency (median, average and frequency of responses); Graphical visualization (frequency charts)</td>
<td>Data collected through the MEEGA+ measurement instrument on the player experience quality factor.</td>
</tr>
<tr>
<td>AQ3: How old are the students that compose the sample of the study?</td>
<td>Measures of central tendency (frequency of responses); Graphical visualization (frequency charts)</td>
<td>Data collected through the MEEGA+ measurement instrument on demographic information of the sample.</td>
</tr>
<tr>
<td>AQ4: What is the gender of the students that compose the sample of the study?</td>
<td>Measures of central tendency (frequency of responses); Graphical visualization (frequency charts)</td>
<td>Data collected through the MEEGA+ measurement instrument on demographic information of the sample.</td>
</tr>
<tr>
<td>AQ5: What is the frequency that the students play digital and/or non-digital games?</td>
<td>Measures of central tendency (frequency of responses); Graphical visualization (frequency charts)</td>
<td>Data collected through the MEEGA+ measurement instrument on demographic information of the sample.</td>
</tr>
</tbody>
</table>
4. Conclusions

In this technical report, we propose the a preliminary version of the MEEGA+KIDS model, a customization of MEEGA+, a quality evaluation model of educational games used as instructional strategy for computing education. The model focuses on the quality evaluation of educational games (including digital as well as non-digital games such as card or board games) in terms of player experience and perceived learning in the context of computing education in secondary school. As next steps of our research we are planning a study in order to evaluate of the model in terms of reliability and validity.
Acknowledgments

We would like to thank all the students that participate in the participatory design.

This work was supported by the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico – www.cnpq.br), an entity of the Brazilian government focused on scientific and technological development.
References

Appendix A. Example questionnaire for the game SplashCode

MEEGA+KIDS

Questionário para a avaliação da qualidade de jogos não-digitais na educação básica

Nome do jogo: SplashCode

Gostaríamos que você respondesse as questões abaixo sobre a sua percepção da qualidade do jogo para nos ajudar a melhorá-lo. Todos os dados são coletados anonimamente e somente serão utilizados no contexto desta pesquisa. Algumas fotografias poderão ser feitas como registro desta atividade, mas não serão publicadas em nenhum local sem autorização.

Nome do pesquisador/professor: Christiane G. von Wangenheim Local e data: Florianópolis 20/08/2018

<table>
<thead>
<tr>
<th>Informações Demográficas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instituição</td>
</tr>
<tr>
<td>Ano/Turma ou Curso (no caso de escola técnica)</td>
</tr>
<tr>
<td>Disciplina</td>
</tr>
<tr>
<td>Idade</td>
</tr>
<tr>
<td>Gênero</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Com que frequência você joga videogames?</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Com que frequência você joga jogos de cartas, tabuleiro, etc.?</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Por favor, marque uma opção da sua opinião sobre cada afirmação abaixo.

<table>
<thead>
<tr>
<th>Afirmações</th>
<th>Discordo totalmente</th>
<th>Discordo</th>
<th>Nem discordo, nem concordo</th>
<th>Concordo</th>
<th>Concordo totalmente</th>
</tr>
</thead>
<tbody>
<tr>
<td>O design do jogo é atraente (tabuleiro, cartas, etc.).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os textos, cores e fontes do material do jogo combinam.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O tamanho e estilo de letras utilizadas no jogo são legíveis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As cores utilizadas no jogo são compreensíveis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aprender a jogar este jogo foi fácil para mim.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As regras do jogo são claras e compreensíveis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu considero que o jogo é fácil de jogar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A organização do conteúdo me ajudou a estar confiante de que eu iria aprender com este jogo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21
Este jogo é desafiador suficiente para mim. O jogo oferece novos desafios (novos obstáculos, situações ou variações) com um ritmo adequado. O jogo não se torna monótono nas suas tarefas (repetitivo ou com tarefas chatas). Completar as tarefas do jogo me deu um sentimento de satisfação. É devido ao meu esforço pessoal que eu consigo avançar no jogo. Me sinto satisfeito com as coisas que aprendi no jogo.

Eu recomendaria este jogo para meus colegas. Eu pude interagir com outras pessoas durante o jogo. O jogo promove momentos de cooperação e/ou competição entre os jogadores. Eu me senti bem interagindo com outras pessoas durante o jogo. Eu me diverti com o jogo. Aconteceu alguma situação durante o jogo que me fez sorrir.

Houve algo interessante no início do jogo que capturou minha atenção. Eu estava tão envolvido no jogo que eu perdi a noção do tempo. O conteúdo do jogo me interessa. É claro para mim como o conteúdo do jogo está relacionado com a disciplina. Eu aprendi conteúdo da disciplina com este jogo. Eu prefiro aprender com este jogo do que de outra forma (p.ex. aula no quadro pelo professor).

Marque a resposta correta. Cada questão tem uma ÚNICA resposta correta.

1. Um algoritmo:
 - é a parte interna de um computador
 - são os passos necessários e ordenados para realizar uma tarefa
 - são as imagens que aparecem na tela do monitor
 - é um jogo de computador

2. Um programa de computador:
 - são os dispositivos (como teclado, mouse, etc.) que você usa para interagir com o computador
 - são as partes internas do computador (como processador, memória, disco rígido, etc.)
 - é a tradução de um algoritmo em instruções que o computador entende
 - é o conjunto dos comandos para jogar um jogo no computador

3. Considere os seguintes passos de um algoritmo para escovar os dentes:
 1. Enxaguar com água.
 2. Limpar a escova de dentes.
 3. Pegar a escova de dentes.
 4. Escovar os dentes.
5. Guardar a escova de dentes.
6. Colocar a pasta de dentes na escova.

Qual a ordem correta dos passos do algoritmo para escovar os dentes?
(Responda da seguinte forma: por exemplo: 1-2-3-4-5-6).
Resposta: __ · __ · __ · __ · __ · __

| O que você aprendeu jogando esse jogo? |
| O que você gostou no jogo? |
| O que você achou ruim? |
| Mais algum comentário? |

Muito obrigado pela sua contribuição!